

https://manara.edu.sy/

1

Introduction to Robot Operating System (ROS 1)

Dr. Essa Alghannam

1- Provide the commands to initialize a ROS workspace, create a package named

"turtle_pkg" within it, and build the workspace.

2- Provide the command to start the turtlesim node.

3- Give the command to start the teleop_key node.

4- Write the commands to print the type of /turtle1/cmd_vel and /turtle1/pose and also

print their message fields.

5- Write the command to create another turtle on the same window at (7.0, 7.5, 0.7)

1 mkdir -p ~/workspace_test/src

cd ~/workspace_test/src

catkin_make

catkin_create_pkg turtle_pkg rospy std_msgs geometry_msgs

cd ..

catkin_make

roscore

2 rosrun turtlesim turtlesim_node

3 rosrun turtlesim turtle_teleop_key

4 rostopic type /turtle1/cmd_vel

rosmsg show geometry_msgs/Twist

rostopic type /turtle1/pose

rosmsg show turtlesim/Pose

5 rosservice call /spawn 7.0 7.5 0.7 "new_turtle"

6- Python code to make the first turtle move from its default initial position (5.5, 5.5, 0)

to the position of the second turtle.

https://manara.edu.sy/

https://manara.edu.sy/

2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#!/usr/bin/env python

import rospy

from geometry_msgs.msg import Twist, Pose

from turtlesim.msg import Pose

import math

def move_turtle ():

 rospy.init_node('turtle _mover', anonymous=True)

 pub = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)

 rate = rospy.Rate(10) # 10Hz

 # Start and target poses

 start_pose = Pose() # start_pose = Pose(5.5 , 5.5 , 0.0 , 0.0 , 0.0)

 start_pose.x = 5.5

 start_pose.y = 5.5

 start_pose.theta = 0.0 # Start orientation (radians)

 target_pose = Pose()

 target_pose.x = 7.0

 target_pose.y = 7.5

 target_pose.theta = 0.7 # Doesn't really matter for line following

 current_pose = None

 def pose_callback(pose_msg):

 nonlocal current_pose

 current_pose = pose_msg

 rospy.Subscriber('/turtle1/pose', Pose, pose_callback)

 # Calculate distance and angle to target

 distance = math.sqrt((target_pose.x - start_pose.x)**2 + (target_pose.y - start_pose.y)**2)

 angle = math.atan2(target_pose.y - start_pose.y, target_pose.x - start_pose.x)

 # Create and publish Twist messages

 twist = Twist()

https://manara.edu.sy/

https://manara.edu.sy/

3

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

 while not rospy.is_shutdown():

 if current_pose is not None:

 # Calculate remaining distance

 remaining_distance = math.sqrt((target_pose.x - current_pose.x)**2 + (target_pose.y -

current_pose.y)**2)

 if remaining_distance > 0.1: # Tolerance for reaching the target

 # Linear velocity towards the target (proportional to remaining distance)

 twist.linear.x = 0.5 * remaining_distance

 # Angular velocity to correct orientation (proportional to angle error)

 angle_error = (angle - current_pose.theta + math.pi) % (2 * math.pi) - math.pi

 twist.angular.z = 1.0 * angle_error

 pub.publish(twist)

 else:

 twist.linear.x = 0.0

 twist.angular.z = 0.0

 pub.publish(twist)

 rospy.loginfo("Reached the target")

 break # Exit loop once the target is reached

 rate.sleep()

if __name__ == '__main__':

 try:

 move_turtle ()

 except rospy.ROSInterruptException:

 pass

https://manara.edu.sy/

https://manara.edu.sy/

4

the `nonlocal` keyword is used to declare that a variable within a nested

function (a function defined inside another function) should refer to a

variable in the *enclosing* function's scope, rather than creating a new local

variable. It's essential for modifying variables in the outer function's scope

from within an inner function without using global variables.

Roslaunch

• `roslaunch` is a powerful command-line tool in the Robot Operating System

(ROS) that allows you to easily start and manage multiple ROS nodes

simultaneously. Instead of starting each node individually using

commands like `rosrun`.

• `roslaunch` lets you specify all the nodes you need in a single XML file (a

launch file).

A simple launch file (e.g., `my_launch.launch`) might look like this:

<launch>

 <node pkg="my_package" type="node1" name="node1"

output="screen"/>

 <node pkg="my_package" type="node2" name="node2"

output="screen"/>

 <param name="my_parameter" value="10"/>

</launch>

https://manara.edu.sy/

https://manara.edu.sy/

5

[Start a node named "node1" from the executable `node1` in the

`my_package` package, sending the output to the screen.]

[Set a parameter named "my_parameter" to the value "10," which will be

available to any nodes that subscribe to it.]

Example:

• Inside your package create a folder named “launch”.

• Inside the folder Create a file named ̀ turtlesim.launch` (you can choose

a different name, but the `.launch` extension is important). The

suitable location within your ROS workspace should be for example:

 `mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch`.

• Add the following content:

<launch>

 <!-- Start the turtlesim node -->

 <node pkg="turtlesim" type="turtlesim_node" name="turtlesim"/>

 <!-- Optionally, start the keyboard teleop node -->

 <node pkg="turtlesim" type="turtle_teleop_key" name="teleop_turtle">

 <param name="scale_linear" value="2.0"/> <!-- Adjust speed -->

 <param name="scale_angular" value="2.0"/> <!-- Adjust turning speed -->

 </node>

</launch>

https://manara.edu.sy/

https://manara.edu.sy/

6

Explanation:

1- `<launch>` and `</launch>`: These tags enclose the entire launch file.

2- `<node>`: This tag defines a ROS node to be launched.

a) `pkg`: Specifies the ROS package containing the node (e.g.,

`"turtlesim"`).

b) `type`: Specifies the executable file within the package (e.g.,

`"turtlesim_node"`).

c) `name`: Assigns a unique name to the node. This is crucial for

identification and avoiding name conflicts.

3- `<param>` (optional): These tags are used to set parameters for the

launched nodes. In this case, they adjust the speed of the turtle controlled by

the keyboard.

Finally run it:

roslaunch myturtlepackage turtlesim.launch

In case of error, try:

chmod +x ~/mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch

Another example:

Create a file named `my_publisher.py` in your ROS package's `src` directory.

~/mycatkin_ws/src/myturtlepackage/src/my_publisher.py

#!/usr/bin/env python3

https://manara.edu.sy/

https://manara.edu.sy/

7

import rospy

from std_msgs.msg import String

def talker():

 pub = rospy.Publisher('my_topic', String, queue_size=10) # Create a

publisher

 rospy.init_node('my_publisher', anonymous=True) # Initialize the node

 rate = rospy.Rate(1) # 1hz

 while not rospy.is_shutdown():

 hello_str = "hello world %s" % rospy.get_time()

rospy.get_time()returns the current time as a floating-point number

#representing seconds since the ROS master started.

 rospy.loginfo(hello_str)

 pub.publish(hello_str) # Publish the message

 rate.sleep()

if __name__ == '__main__':

 try:

 talker()

 except rospy.ROSInterruptException:

 pass

https://manara.edu.sy/

https://manara.edu.sy/

8

~/mycatkin_ws/src/myturtlepackage/src/my_publisher.py

Edit CMAKELISTS.txt file

catkin_install_python(PROGRAMS src/ my_publisher.py

DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION})

Then

cd ~/mycatkin_ws/src/myturtlepackage /src

chmod +x my_publisher.py

Modify the launch file:

`mycatkin_ws/src/myturtlepackage/launch/turtlesim.launch`.

<launch>

 <!-- Launch turtlesim for visualization -->

 <node pkg="turtlesim" type="turtlesim_node" name="sim"/>

 <!-- Launch the Python publisher node -->

 <node pkg="myturtlepackage" type="my_publisher.py"

name="my_publisher" output="screen"/>

</launch>

* `output="screen"`: This option controls where the output of the node

(standard output and standard error streams) is directed. `screen` means the

https://manara.edu.sy/

https://manara.edu.sy/

9

output (e.g., `rospy.loginfo` messages) will be printed to the terminal where

you run `roslaunch`. Other options include `log` (which sends the output to

ROS log files) or `none` (which suppresses output entirely).

Finally:

cd ~/mycatkin_ws

catkin_make

roslaunch myturtlepackage turtlesim.launch

https://manara.edu.sy/

